.

Темы для uCoz

Среда, 23.01.2019, 14:20
Приветствую Вас Гость

Регистрация
Вход

Каталог статей


Главная » Статьи » Астрономия,космос,наука


Адронный коллайдер
Краткое содержание в презентации.
презентация

Кому интерестно смотрите ниже!




Как  работает Большой Адронный Коллайдер.






Запуск коллайдера



Большой адро́нный колла́йдер (англ. Large Hadron Collider, LHC; сокр. БАК) — ускоритель заряженных частиц на встречных пучках, предназначенный для разгона протонов и тяжёлых ионов (ионов свинца) и изучения продуктов их соударений. Коллайдер построен в научно-исследовательском центре Европейского совета ядерных исследований на границе Швейцарии и Франции, недалеко от Женевы. БАК является самой крупной экспериментальной установкой в мире. Руководитель проекта — Лин Эванс. В строительстве и исследованиях участвовали и участвуют более 10 000 учёных и инженеров из более чем 100 стран.

Большим назван из-за своих размеров: длина основного кольца ускорителя составляет 26 659 м; адронным — из-за того, что он ускоряет адроны, то есть частицы, состоящие из кварков; коллайдером (англ. collide — сталкиваться) — из-за того, что пучки частиц ускоряются в противоположных направлениях и сталкиваются в специальных точках столкновения.

__________________________________________________________________



Детекторы и предускорители БАК

Траектория протонов p (и тяжёлых ионов свинца Pb) начинается в линейных ускорителях (в точках p и Pb, соответственно). Затем частицы попадают в бустер протонного синхротрона (PS), через него — в протонный суперсинхротрон (SPS) и, наконец, непосредственно в туннель БАК.

Детекторы TOTEM и LHCf, отсутствующие на схеме, находятся рядом с детекторами CMS и ATLAS, соответственно.


__________________________________________________________________







__________________________________________________________________




__________________________________________________________________

В ускорителе предполагается сталкивать протоны с суммарной энергией 14 ТэВ (то есть 14 тераэлектронвольт или 14×1012 электронвольт) в системе центра масс налетающих частиц, а также ядра свинца с энергией 5,5 ГэВ (5,5×109 электронвольт) на каждую пару сталкивающихся нуклонов. На начало 2010 года БАК уже несколько превзошел по энергии протонов предыдущего рекордсмена — протон-антипротонный коллайдер Тэватрон, который в настоящее время работает в Национальной ускорительной лаборатории им. Энрико Ферми (США). В будущем, когда наладка оборудования будет завершена, БАК будет самым высокоэнергичным ускорителем элементарных частиц в мире, на порядок превосходя по энергии остальные коллайдеры, в том числе и релятивистский коллайдер тяжёлых ионов RHIC, работающий в Брукхейвенской лаборатории (США).

Светимость БАК во время первого пробега составит всего 1029 частиц/см²·с. Это весьма скромная величина. Однако, после запуска БАК для экспериментальных исследований, светимость будет постепенно повышаться от начальной 5×1032 до номинальной 1,7×1034 частиц/см²·с, что по порядку величины соответствует светимостям современных B-фабрик BaBar (SLAC, США) и Belle (KEK, Япония). Выход на номинальную светимость планируется в 2010 году.

Ускоритель расположен в том же туннеле, который прежде занимал Большой электрон-позитронный коллайдер. Туннель с длиной окружности 26,7 км проложен под землёй на территории Франции и Швейцарии. Глубина залегания туннеля — от 50 до 175 метров, причём кольцо туннеля наклонено примерно на 1,4 % относительно поверхности земли. Для удержания, коррекции и фокусировки протонных пучков используются 1624 сверхпроводящих магнита, общая длина которых превышает 22 км. Магниты работают при температуре 1,9 K (−271 °C), что немного ниже температуры перехода гелия в сверхтекучее состояние.

Россия принимает активное участие как в строительстве БАК, так и в создании всех детекторов, которые должны работать на коллайдере.

Процесс ускорения частиц в коллайдере.

Скорость частиц в БАК на встречных пучках близка к скорости света в вакууме. Разгон частиц до таких больших энергий достигается в несколько этапов. На первом этапе низкоэнергетичные линейные ускорители Linac 2 и Linac 3 производят инжекцию протонов и ионов свинца для дальнейшего ускорения. Затем частицы попадают в PS-бустер и далее в сам PS (протонный синхротрон), приобретая энергию в 28 ГэВ. При этой энергии они уже движутся со скоростью близкой к световой. После этого ускорение частиц продолжается в SPS (протонный суперсинхротрон), где энергия частиц достигает 450 ГэВ. Затем сгусток протонов направляют в главное 26,7-километровое кольцо, доводя энергию протонов до максимальных 7 ТэВ, и в точках столкновения детекторы фиксируют происходящие события. Два встречных пучка протонов при полном заполнении могут содержать 2808 сгустков каждый. На начальных этапах отладки процесса ускорения циркулируют лишь по одному сгустку в пучке длиной несколько сантиметров и небольшого поперечного размера. Затем начинают увеличивать количество сгустков. Сгустки располагаются в фиксированных позициях относительно друг друга, которые синхронно движутся вдоль кольца. Сгустки в определённой последовательности могут сталкиваться в четырёх точках кольца, где расположены детекторы частиц.

Кинетическая энергия всех сгустков адронов в БАКе при полном его заполнении сравнима с кинетической энергией реактивного самолета, хотя масса всех частиц не превышает нанограмма и их даже нельзя увидеть невооружённым глазом. Такая энергия достигается за счёт колоссальной скорости частиц, близкой к скорости света.

Сгустки проходят полный круг ускорителя быстрее чем за 0,0001 сек, совершая, таким образом, свыше 10 000 оборотов в секунду.

 Потребление энергии.

Во время работы коллайдера расчётное потребление энергии составит 180 МВт. Предположительные энергозатраты всего CERNа на 2009 год с учётом работающего коллайдера — 1000 ГВт·ч, из которых 700 ГВт·ч придётся на долю ускорителя. Эти энергозатраты — около 10 % от суммарного годового энергопотребления кантона Женева. Сам CERN не производит энергию, имея лишь резервные дизельные генераторы.
 Вопросы безопасности

    Вопросы безопасности Большого адронного коллайдера.

Значительная доля внимания со стороны представителей общественности и СМИ связана с обсуждением катастроф, которые могут произойти в связи с функционированием БАК. Наиболее часто обсуждается опасность возникновения микроскопических чёрных дыр с последующей цепной реакцией захвата окружающей материи, а также угроза возникновения страпелек, гипотетически способных преобразовать в страпельки всю материю Вселенной.


Строительство.

Идея проекта Большого адронного коллайдера родилась в 1984 году и была официально одобрена десятью годами позже. Его строительство началось в 2001 году, после окончания работы предыдущего ускорителя — Большого электрон-позитронного коллайдера.

    19 ноября 2006 года закончено строительство специальной криогенной линии для охлаждения магнитов.
    27 ноября 2006 года установлен в туннеле последний сверхпроводящий магнит.

Категория: Астрономия,космос,наука | Добавил: DopinG (13.02.2011)
Просмотров: 5499 | Рейтинг: 0.0/0
Всего комментариев: 0
Имя *:
Email *:
Код *: